Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 334: 122176, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37437757

RESUMO

Microalgae and blue mussels are known to accumulate undesirable substances from the environment, including arsenic (As). Microalgae can biotransform inorganic As (iAs) to organoarsenic species, which can be transferred to blue mussels. Knowledge on As uptake, biotransformation, and trophic transfer is important with regards to feed and food safety since As species have varying toxicities. In the current work, experiments were conducted in two parts: (1) exposure of the microalgae Diacronema lutheri to 5 and 10 µg/L As(V) in seawater for 4 days, and (2) dietary As exposure where blue mussels (Mytilus edulis L.) were fed with D. lutheri exposed to 5 and 10 µg/L As(V), or by aquatic exposure to 5 µg/L As(V) in seawater, for a total of 25 days. The results showed that D. lutheri can take up As from seawater and transform it to methylated As species and arsenosugars (AsSug). However, exposure to 10 µg/L As(V) resulted in accumulation of iAs in D. lutheri and lower production of methylated As species, which may suggest that detoxification mechanisms were overwhelmed. Blue mussels exposed to As via the diet and seawater showed no accumulation of As. Use of linear mixed models revealed that the blue mussels were gradually losing As instead, which may be due to As concentration differences in the mussels' natural environment and the experimental setup. Both D. lutheri and blue mussels contained notable proportions of simple methylated As species and AsSug. Arsenobetaine (AB) was not detected in D. lutheri but present in minor fraction in mussels. The findings suggest that low-trophic marine organisms mainly contain methylated As species and AsSug. The use of low-trophic marine organisms as feed ingredients requires further studies since AsSug are regarded as potentially toxic, which may introduce new risks to feed and food safety.


Assuntos
Arsênio , Microalgas , Mytilus edulis , Mytilus , Poluentes Químicos da Água , Animais , Arsênio/toxicidade , Arsênio/análise , Mytilus edulis/metabolismo , Microalgas/metabolismo , Cadeia Alimentar , Organismos Aquáticos/metabolismo , Poluentes Químicos da Água/análise , Mytilus/metabolismo
2.
J Trace Elem Med Biol ; 76: 127110, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36495851

RESUMO

BACKGROUND: Blue mussels (Mytilus edulis L.) can accumulate undesirable substances, including the potentially toxic elements (PTEs) cadmium (Cd), mercury, (Hg), lead (Pb), arsenic (As) and As species. In this study, the levels of PTEs and As species were determined in samples of blue mussels to assess the influence of environmental and biological factors, and evaluate the potential risk associated with blue mussels in terms of food and feed safety. METHODOLOGY: Blue mussels were collected monthly from one location in Western Norway from February 2018 to December 2018, and from April 2019 to April 2020. Samples were analyzed for PTEs using inductively coupled plasma mass spectrometry (ICP-MS), and high-performance liquid chromatography (HPLC) coupled to ICP-MS. Temperature, salinity and fluorescence (chlorophyll a) were monitored in the seawater column by STD/CTD, to assess the potential influence of these environmental factors on the PTE levels in the mussels. RESULTS: The results showed seasonal variations in the PTEs, with somewhat higher concentrations in spring and winter months. Unusually high levels of total As (101.2 mg kg-1 dw) and inorganic As (53.6 mg kg-1 dw) were observed for some of the time points. The organic As species arsenobetaine was generally the major As species (17-82% of total As) in the mussels, but also simple methylated As species and arsenosugars were detected. Principal components analysis (PCA) did not show a consistent relationship between the environmental factors and the PTE concentrations, showing contrary results for some elements for the periods studied. The condition index (CI) could explain variations in element concentration with significant correlations for Cd (r = -0.67, p = 0.009) and Pb (r = -0.62, p = 0.02 in 2019/20 and r = -0.52, p = 0.02 in 2018), whereas the correlation between As and CI was not significant (r = 0.12 in 2018, and r = -0.06 in 2019/20). Higher concentrations of iAs and arsenosugars coincided with increased signals of chlorophyll a, suggesting that phytoplankton blooms could be a source of As in the blue mussels. CONCLUSION: To our knowledge, this is the first study of As species in blue mussels collected over a time period of two years, providing an insight into the natural variations of these chemical forms in mussels. In terms of mussel as food and future feed material, concentrations of Cd, Hg and Pb were below the maximum levels (MLs) established in the EU food and feed legislation. However, levels of As and iAs in mussels at some time points exceeded the MLs for As in the feed legislation, and the margin of exposure (MOE) was low if these mussels were for human consumption, highlighting the importance of determining the chemical forms of As in feed and food.


Assuntos
Arsênio , Mercúrio , Mytilus edulis , Poluentes Químicos da Água , Animais , Humanos , Arsênio/análise , Cádmio/análise , Mercúrio/análise , Clorofila A/análise , Chumbo/análise , Estações do Ano , Monitoramento Ambiental/métodos , Noruega , Poluentes Químicos da Água/análise
3.
Sci Total Environ ; 699: 134281, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31671307

RESUMO

Fish farms are increasingly situated in strong current sites above or near to mixed-bottom habitats that include organisms not normally considered in the context of organic enrichment. This study takes a holistic view of the benthic enrichment process by combining different survey techniques on complimentary spatial scales: conventional macrofaunal cores, larger-scale visual quantification of epibiota and environmental-DNA metabarcoding of microbial communities. A large tube forming polychaete (Arenicola marina), normally found intertidally and living too deep for conventional sampling, was observed occupying an opportunistic niche in areas of high deposition and in very close association with Capitellid worm complexes. The surface-dwelling brittlestar, Ophiocomina nigra, was abundant at distances of 250-1000 m from Farm-B, suggesting a positive response to enrichment, but was displaced where sedimentation exceed 5 g m2 d-1. A corresponding gradient was evident within the sediment microbial communities, supporting established theories about ecosystem engineering and multi-species synergies for organic waste assimilation. Many of the bacteria present in the near-farm sediments were linked to the farmed fish and fish health issues suggesting one or two-way inoculation pressures. These functionally different benthic organisms are intrinsically linked and the resulting synergy has the potential to assimilate significant quantities of anthropogenically produced organic waste contributing to environmental sustainability.


Assuntos
Ecossistema , Monitoramento Ambiental , Resíduos , Meio Ambiente , Pesqueiros
4.
J Proteomics ; 105: 164-73, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24704858

RESUMO

Comparing populations residing in contrasting environments is an efficient way to decipher how organisms modulate their physiology. Here we present the proteomic signatures of two populations in a non-model marine species, the great scallop Pecten maximus, living in the northern (Hordaland, Norway) and in the center (Brest, France) of this species' latitudinal distribution range. The results showed 38 protein spots significantly differentially accumulated in mantle tissues between the two populations. We could unambiguously identify 11 of the protein spots by Maldi TOF-TOF mass spectrometry. Eight proteins corresponded to different isoforms of actin, two were identified as filamin, another protein related to the cytoskeleton structure, and one was the protease elastase. Our results suggest that scallops from the two populations assayed may modulate their cytoskeleton structures through regulation of intracellular pools of actin and filamin isoforms to better adapt to their environment. BIOLOGICAL SIGNIFICANCE: Marine mollusks are non-model organisms that have been poorly studied at the proteomic level, and this article is the first studying the great scallop (P. maximus) at this level. Furthermore, it addresses population proteomics, a new promising field, especially in environmental sciences. This article is part of a Special Issue entitled: Proteomics of non-model organisms.


Assuntos
Adaptação Fisiológica/fisiologia , Pecten/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Animais , Citoesqueleto/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...